
Technical Report
CMU/SEI-94-TR-21
ESC-TR-94-21

Carnegie-Mellon University

Software Engineering Institute BTfe
ELECTE
DEC 2 7 1994

C

An Introduction to Software Architecture

David Garten

Mary Shaw

January 1994

-Mö

4%il

19941221 039
JttoW^XBBp80fflüi

Technical Report
CMU7SEI-94-TR-21

ESC-TR-94-21
January 1994

An Introduction to Software Architecture

David Garlan

Mary Shaw

This report also appears as Carnegie Mellon University School of
Computer Science Technical Report number CMU-CS-94-166.

Accesion for

NTIS CRA&I
DTiC TA8
Unannounced
Justii'icati'j'-n

By

Oistribntion/

a

Availability Codes

Oist I Avail anöl°r

Special

Also published as "An Introduction to Software Architecture,"
Advances in Software Engineering, Volume 1,

edited by V. Ambriola and G. Tortora,
World Scientific Publishing Company, New Jersey, 1993.

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, US AF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1994 by Mary Shaw and David Garlan.

The research reported here was sponsored by the Wright Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and the Advanced Research Projects Agency, under grant F33615-93-1-1330; by National Science Foundation
Grants CCR-9109469 and CCR-9112880; and by a grant from Siemens Corporate Research; this work was created in the per-
formance of Federal Government Contract Number F19628-90-C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a Federally Funded Research and Development Center. The Government of the United
States has a royalty-free government purpose license to use, duplicate or disclose the work, in whole or in part and in any
manner, and to have or permit others to do so, for government purposes. Views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
Wright Laboratory, the U.S. Department of Defense, the United States Government, the National Science Foundation, Sie-
mens Corporation, or Carnegie Mellon University.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license under the clause at 52 227-
7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212. Phone: 1-800-685-6510
FAX: (412)321-2994.

Copies of this document are available through the National Technical Information Service (NTIS). For information on order-
ing, please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA
22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access to and
transfer of scientific and technical information for DoD personnel, DoD contractors and potential contractors, and otheT U.S.
Government agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical In-
formation Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145. Phone: (703) 274-7633.

Contents

1. Introduction 1
2. From Programming Languages to Software Architecture 2

2.1. High-level Programming Languages 2
2.2. Abstract Data Types 3
2.3. Software Architecture 3

3. Common Architectural Styles 4
3.1. Pipes and Filters 5
3.2. Data Abstraction and Object-Oriented Organization . 6
3.3. Event-based, Implicit Invocation 8
3.4- Layered Systems 9
3.5. Repositories 10
3.6. Table Driven Interpreters 12
3.7. Other Familiar Architectures 12
3.8. Heterogeneous Architectures 13

4. Case Studies 14
4.1. Case Study 1: Key Word in Context 14
4.2. Case Study 2: Instrumentation Software 20
4.3. Case 3: A Fresh View of Compilers 24
4-4- Case 4: A. Layered Design with Different Styles for

the Layers 27
4.5. Case 5: An Interpreter Using Different Idioms for

the Components 29
4.6. Case 6: A Blackboard Globally Recast as Interpreter 33

5. Past, Present, and Future 37

List of Figures

1 Pipes and Filters 5
2 Abstract Data Types & Objects 7
3 Layered Systems 10
4 The Blackboard 11
5 Interpreter 12
6 KWIC - Shared Data Solution 16
7 KWIC - Abstract Data Type Solution 17
8 KWIC - Implicit Invocation Solution 18
9 KWIC - Pipe and Filter Solution 19
10 KWIC - Comparison of Solutions 20
11 Oscilloscopes - An Object-oriented Model 21
12 Oscilloscopes - A Layered Model 22
13 Oscilloscopes - A Pipe and Filter Model 23
14 Oscilloscopes - A Modified Pipe and Filter Model 23
15 Traditional Compiler Model 25
16 Traditional Compiler Model with Shared Symbol Table 25
17 Modern Canonical Compiler 26
18 Canonical Compiler, Revisited 26
19 PRO VOX - Hierarchical Top Level 28
20 PROVOX - Object-Oriented Elaboration 28
21 Basic Rule-Based System 30
22 Sophisticated Rule-Based System 31
23 Simplified Rule-Based System 32
24 Hearsay-n 34
25 Blackboard View of Hearsay-II 35
26 Interpreter View of Hearsay-II 36

in

IV

Abstract

As the size of software systems increases, the algorithms and data structures of the com-
putation no longer constitute the major design problems. When systems are constructed
from many components, the organization of the overall system - the software architecture
- presents a new set of design problems. This level of design has been addressed in a num-
ber of ways including informal diagrams and descriptive terms, module interconnection
languages, templates and frameworks for systems that serve the needs of specific domains,
and formal models of component integration mechanisms.

In this paper we provide an introduction to the emerging field of software architecture. We
begin by considering a number of common architectural styles upon which many systems
are currently based and show how different styles can be combined in a single design. Then
we present six case studies to illustrate how architectural representations can improve our
understanding of complex software systems. Finally, we survey some of the outstanding
problems in the field, and consider a few of the promising research directions.

1. Introduction

As the size and complexity of software systems increases, the design problem goes beyond
the algorithms and data structures of the computation: designing and specifying the overall
system structure emerges as a new kind of problem. Structural issues include gross organi-
zation and global control structure; protocols for communication, synchronization, and data
access; assignment of functionality to design elements; physical distribution; composition
of design elements; scaling and performance; and selection among design alternatives.

This is the software architecture level of design. There is a considerable body of
work on this topic, including module interconnection languages, templates and frameworks
for systems that serve the needs of specific domains, and formal models of component
integration mechanisms. In addition, an implicit body of work exists in the form of
descriptive terms used informally to describe systems. And while there is not currently a
well-defined terminology or notation to characterize architectural structures, good software
engineers make common use of architectural principles when designing complex software.
Many of the principles represent rules of thumb or idiomatic patterns that have emerged
informally over time. Others are more carefully documented as industry and scientific
standards.

It is increasingly clear that effective software engineering requires facility in architec-
tural software design. First, it is important to be able to recognize common paradigms so
that high-level relationships among systems can be understood and so that new systems can
be built as variations on old systems. Second, getting the right architecture is often crucial
to the success of a software system design; the wrong one can lead to disastrous results.
Third, detailed understanding of software architectures allows the engineer to make prin-
cipled choices among design alternatives. Fourth, an architectural system representation
is often essential to the analysis and description of the high-level properties of a complex
system.

In this paper we provide an introduction to the field of software architecture. The purpose
is to illustrate the current state of the discipline and examine the ways in which architectural
design can impact software design. The material presented here is selected from a semester
course, Architectures for Software Systems, taught at CMU by the authors [1]. Naturally,
a short paper such as this can only briefly highlight the main features of the terrain.
This selection emphasizes informal descriptions omitting much of the course's material on
specification, evaluation, and selection among design alternatives. We hope, nonetheless,
that this will serve to illuminate the nature and significance of this emerging field.

In the following section we outline a number of common architectural styles upon which
many systems are currently based, and show how heterogeneous styles can be combined in
a single design. Next we use six case studies to illustrate how architectural representations
of a software system can improve our understanding of complex systems. Finally, we
survey some of the outstanding problems in the field, and consider a few of the promising
research directions.

The text that makes up the bulk of this article has been drawn from numerous other
publications by the authors. The taxonomy of architectural styles and the case studies have
incorporated parts of several published papers [1, 2, 3, 4]. To a lesser extent material has
been drawn from other articles by the authors [5, 6, 7].

2. From Programming Languages to Software Architecture

One characterization of progress in programming languages and tools has been regular
increases in abstraction level—or the conceptual size of software designers building blocks.
To place the field of Software Architecture into perspective let us begin by looking at the
historical development of abstraction techniques in computer science.

2.1. High-level Programming Languages

When digital computers emerged in the 1950s, software was written in machine language;
programmers placed instructions and data individually and explicitly in the computer's
memory. Insertion of a new instruction in a program might require hand-checking of the
entire program to update references to data and instructions that moved as a result of the
insertion. Eventually it was recognized that the memory layout and update of references
could be automated, and also that symbolic names could be used for operation codes, and
memory addresses. Symbolic assemblers were the result. They were soon followed by
macro processors, which allowed a single symbol to stand for a commonly-used sequence
of instructions. The substitution of simple symbols for machine operation codes, machine
addresses yet to be defined, and sequences of instructions was perhaps the earliest form of
abstraction in software.

In the latter part of the I950's, it became clear that certain patterns of execution were
commonly useful—indeed, they were so well understood that it was possible to create them
automatically from a notation more like mathematics than machine language. The first
of these patterns were for evaluation of arithmetic expressions, for procedure invocation,
and for loops and conditional statements. These insights were captured in a series of early
high-level languages, of which Fortran was the main survivor.

Higher-level languages allowed more sophisticated programs to be developed, and
patterns in the use of data emerged. Whereas in Fortran data types served primarily as
cues for selecting the proper machine instructions, data types in Algol and it successors
serve to state the programmer's intentions about how data should be used. The compilers
for these languages could build on experience with Fortran and tackle more sophisticated
compilation problems. Among other things, they checked adherence to these intentions,
thereby providing incentives for the programmers to use the type mechanism.

Progress in language design continued with the introduction of modules to provide
protection for related procedures and data structures, with the separation of a module's
specification from its implementation, and with the introduction of abstract data types.

2.2. Abstract Data Types

In the late 1960s, good programmers shared an intuition about software development: If
you get the data structures right, the effort will make development of the rest of the program
much easier. The abstract data type work of the 1970s can be viewed as a development
effort that converted this intuition into a real theory. The conversion from an intuition to a
theory involved understanding

the software structure (which included a representation packaged with its primitive
operators),

specifications (mathematically expressed as abstract models or algebraic axioms),

language issues (modules, scope, user-defined types),

•

•

• integrity of the result (invariants of data structures and protection from other manip-
ulation),

• rules for combining types (declarations),

• information hiding (protection of properties not explicitly included in specifications).

The effect of this work was to raise the design level of certain elements of software systems,
namely abstract data types, above the level of programming language statements or indi-
vidual algorithms. This form of abstraction led to an understanding of a good organization
for an entire module that serves one particular purpose. This involved combining repre-
sentations, algorithms, specifications, and functional interfaces in uniform ways. Certain
support was required from the programming language, of course, but the abstract data type
paradigm allowed some parts of systems to be developed from a vocabulary of data types
rather than from a vocabulary of programming-language constructs.

2.3. Soßware Architecture

Just as good programmers recognized useful data structures in the late 1960's, good software
system designers now recognize useful system organizations. One of these is based on the
theory of abstract data types. But this is not the only way to organize a software system.

Many other organizations have developed informally over time, and are now part of
the vocabulary of software system designers. For example, typical descriptions of software
architectures include synopses such as (italics ours):

• "Camelot is based on the client-server model and uses remote procedure calls both
locally and remotely to provide communication among applications and servers." [8]

• "Abstraction layering and system decomposition provide the appearance of system
uniformity to clients, yet allow Helix to accommodate a diversity of autonomous
devices. The architecture encourages a client-server model for the structuring of
applications." [9]

• "We have chosen a distributed, object-oriented approach to managing information."
[10]

• "The easiest way to make the canonical sequential compiler into a concurrent compiler
is to pipeline the execution of the compiler phases over a number of processors.
... A more effective way [is to] split the source code into many segments, which
are concurrently processed through the various phases of compilation [by multiple
compiler processes] before a final, merging pass recombines the object code into a
single program." [11]

Other software architectures are carefully documented and often widely disseminated.
Examples include the International Standard Organization's Open Systems Interconnection
Reference Model (a layered network architecture) [12], the NIST/ECMA Reference Model
(a generic software engineering environment architecture based on layered communication
substrates) [13, 14], and the X Window System (a distributed windowed user interface
architecture based on event triggering and callbacks) [15].

We are still far from having a well-accepted taxonomy of such architectural paradigms,
let alone a fully-developed theory of software architecture. But we can now clearly identify
a number of architectural patterns, or styles, that currently form the basic repertoire of a
software architect.

3. Common Architectural Styles

We now examine some of these representative, broadly-used architectural styles. Our
purpose is to illustrate the rich space of architectural choices, and indicate what are some
of the tradeoffs in choosing one style over another.

To make sense of the differences between styles, it helps to have a common framework
from which to view them. The framework we will adopt is to treat an architecture of a
specific system as a collection of computational components—or simply components—
together with a description of the interactions between these components—the connectors.
Graphically speaking, this leads to a view of an abstract architectural description as a graph
in which the nodes represent the components and the arcs represent the connectors. As we
will see, connectors can represent interactions as varied as procedure call, event broadcast,
database queries, and pipes.

An architectural style, then, defines a family of such systems in terms of a pattern of
structural organization. More specifically, an architectural style determines the vocabulary
of components and connectors that can be used in instances of that style, together with a
set of constraints on how they can be combined. These can include topological constraints
on architectural descriptions (e.g., no cycles). Other constraints—say, having to do with
execution semantics—might also be part of the style definition.

Given this framework, we can understand what a style is by answering the following
questions: What is the structural pattern—the components, connectors, and constraints?
What is the underlying computational model? What are the essential invariants of the style?

Filters

Pipes

Figure 1: Pipes and Filters

What are some common examples of its use? What are the advantages and disadvantages
of using that style? What are some of the common specializations?

3.1. Pipes and Filters

In a pipe and filter style each component has a set of inputs and a set of outputs. A component
reads streams of data on its inputs and produces streams of data on its outputs, delivering
a complete instance of the result in a standard order. This is usually accomplished by
applying a local transformation to the input streams and computing incrementally so output
begins before input is consumed. Hence components are termed "filters". The connectors
of this style serve as conduits for the streams, transmitting outputs of one filter to inputs of
another. Hence the connectors are termed "pipes".

Among the important invariants of the style, filters must be independent entities: in
particular, they should not share state with other filters. Another important invariant is
that filters do not know the identity of their upstream and downstream filters. Their
specifications might restrict what appears on the input pipes or make guarantees about what
appears on the output pipes, but they may not identify the components at the ends of those
pipes. Furthermore, the correctness of the output of a pipe and filter network should not
depend on the order in which the filters perform their incremental processing—although
fair scheduling can be assumed. (See [5] for an in-depth discussion of this style and its
formal properties.) Figure 1 illustrates this style.

Common specializations of this style include pipelines, which restrict the topologies to
linear sequences of filters; bounded pipes, which restrict the amount of data that can reside
on a pipe; and typed pipes, which require that the data passed between two filters have a
well-defined type.

A degenerate case of a pipeline architecture occurs when each filter processes all of its
input data as a single entity.1 In this case the architecture becomes a "batch sequential"

'In general, we find that the boundaries of styles can overlap. This should not deter us from identifying
the main features of a style with its central examples of use.

system. In these systems pipes no longer serve the function of providing a stream of data,
and therefore are largely vestigial. Hence such systems are best treated as instances of a
separate architectural style.

The best known examples of pipe and filter architectures are programs written in the
Unix shell [16]. Unix supports this style by providing a notation for connecting components
(represented as Unix processes) and by providing run time mechanisms for implementing
pipes. As another well-known example, traditionally compilers have been viewed as a
pipeline systems (though the phases are often not incremental). The stages in the pipeline
include lexical analysis, parsing, semantic analysis, code generation. (We return to this
example in the case studies.) Other examples of pipes and filters occur in signal processing
domains [17], functional programming [18], and distributed systems [19].

Pipe and filter systems have a number of nice properties. First, they allow the designer
to understand the overall input/output behavior of a system as a simple composition of
the behaviors of the individual filters. Second, they support reuse: any two filters can
be hooked together, provided they agree on the data that is being transmitted between
them. Third, systems can be easily maintained and enhanced: new filters can be added
to existing systems and old filters can be replaced by improved ones. Fourth, they permit
certain kinds of specialized analysis, such as throughput and deadlock analysis. Finally,
they naturally support concurrent execution. Each filter can be implemented as a separate
task and potentially executed in parallel with other filters.

But these systems also have their disadvantages.2 First, pipe and filter systems often
lead to a batch organization of processing. Although filters can process data incrementally,
since filters are inherently independent, the designer is forced to think of each filter as
providing a complete transformation of input data to output data. In particular, because of
their transformational character, pipe and filter systems are typically not good at handling
interactive applications. This problem is most severe when incremental display updates are
required, because the output pattern for incremental updates is radically different from the
pattern for filter output. Second, they may be hampered by having to maintain correspon-
dences between two separate, but related streams. Third, depending on the implementation,
they may force a lowest common denominator on data transmission, resulting in added
work for each filter to parse and unparse its data. This, in turn, can lead both to loss of
performance and to increased complexity in writing the filters themselves.

3.2. Data Abstraction and Object-Oriented Organization

In this style data representations and their associated primitive operations are encapsulated
in an abstract data type or object. The components of this style are the objects—or, if you
will, instances of the abstract data types. Objects are examples of a sort of component
we call a manager because it is responsible for preserving the integrity of a resource
(here the representation). Objects interact through function and procedure invocations.

2This is true in spite of the fact that pipes and filters, like every style, has a set of devout religious followers
- people who believe that all problems worth solving can best be solved using that particular style.

Manager
(ADT)

Proc call

obj is a manager

op is an invocation

Figure 2: Abstract Data Types & Objects

Two important aspects of this style are (a) that an object is responsible for preserving the
integrity of its representation (usually by maintaining some invariant over it), and (b) that
the representation is hidden from other objects. Figure 2 illustrates this style.3

The use of abstract data types, and increasingly the use of object-oriented systems,
is, of course, widespread. There are many variations. For example, some systems allow
"objects" to be concurrent tasks; others allow objects to have multiple interfaces [20, 21].

Object-oriented systems have many nice properties, most of which are well known.
Because an object hides its representation from its clients, it is possible to change the
implementation without affecting those clients. Additionally, the bundling of a set of
accessing routines with the data they manipulate allows designers to decompose problems
into collections of interacting agents.

But object-oriented systems also have some disadvantages. The most significant is that
in order for one object to interact with another (via procedure call) it must know the identity
of that other object. This is in contrast, for example, to pipe and filter systems, where
filters do need not know what other filters are in the system in order to interact with them.
The significance of this is that whenever the identity of an object changes it is necessary
to modify all other objects that explicitly invoke it. In a module-oriented language this
manifests itself as the need to change the "import" list of every module that uses the changed
module. Further there can be side-effect problems: if A uses object B and C also uses B,
then C's effects on B look like unexpected side effects to A, and vice versa.

3We haven't mentioned inheritance in this description. While inheritance is an important organizing
principle for defining the types of objects in a system, it does not have a direct architectural function. In
particular, in our view, an inheritance relationship is not a connector, since it does not define the interaction
between components in a system. Also, in an architectural setting inheritance of properties is not restricted
to object types—but may include connectors and even architectural styles.

3.3. Event-baaed, Implicit Invocation

Traditionally, in a system in which the component interfaces provide a collection of pro-
cedures and functions, components interact with each other by explicitly invoking those
routines. However, recently there has been considerable interest in an alternative integration
technique, variously referred to as implicit invocation, reactive integration, and selective
broadcast. This style has historical roots in systems based on actors [22], constraint satis-
faction, daemons, and packet-switched networks.

The idea behind implicit invocation is that instead of invoking a procedure directly,
a component can announce (or broadcast) one or more events. Other components in the
system can register an interest in an event by associating a procedure with the event.
When the event is announced the system itself invokes all of the procedures that have been
registered for the event. Thus an event announcement "implicitly" causes the invocation of
procedures in other modules.

For example, in the Field system [23], tools such as editors and variable monitors register
for a debugger's breakpoint events. When a debugger stops at a breakpoint, it announces
an event that allows the system to automatically invoke methods in those registered tools.
These methods might scroll an editor to the appropriate source line or redisplay the value
of monitored variables. In this scheme, the debugger simply announces an event, but does
not know what other tools (if any) are concerned with that event, or what they will do when
that event is announced.

Architecturally speaking, the components in an implicit invocation style are modules
whose interfaces provide both a collection of procedures (as with abstract data types) and a
set of events. Procedures may be called in the usual way. But in addition, a component can
register some of its procedures with events of the system. This will cause these procedures
to be invoked when those events are announced at run time. Thus the connectors in an
implicit invocation system include traditional procedure call as well as bindings between
event announcements and procedure calls.

The main invariant of this style is that announcers of events do not know which
components will be affected by those events. Thus components cannot make assumptions
about order of processing, or even about what processing, will occur as a result of their
events. For this reason, most implicit invocation systems also include explicit invocation
(i.e., normal procedure call) as a complementary form of interaction.

Examples of systems with implicit invocation mechanisms abound [7]. They are used
in programming environments to integrate tools [24, 23], in database management systems
to ensure consistency constraints [22,25], in user interfaces to separate presentation of data
from applications that manage the data [26, 27], and by syntax-directed editors to support
incremental semantic checking [28, 29].

One important benefit of implicit invocation is that it provides strong support for reuse.
Any component can be introduced into a system simply by registering it for the events
of that system. A second benefit is that implicit invocation eases system evolution [30].
Components may be replaced by other components without affecting the interfaces of other
components in the system.

8

The primary disadvantage of implicit invocation is that components relinquish control
over the computation performed by the system. When a component announces an event, it
has no idea what other components will respond to it. Worse, even if it does know what
other components are interested in the events it announces, it cannot rely on the order in
which they are invoked. Nor can it know when they are finished. Another problem concerns
exchange of data. Sometimes data can be passed with the event. But in other situations event
systems must rely on a shared repository for interaction. In these cases global performance
and resource management can become a serious issue. Finally, reasoning about correctness
can be problematic, since the meaning of a procedure that announces events will depend on
the context of bindings in which it is invoked. This is in contrast to traditional reasoning
about procedure calls, which need only consider a procedure's pre- and post-conditions
when reasoning about an invocation of it.

3.4' Layered Systems

A layered system is organized hierarchically, each layer providing service to the layer
above it and serving as a client to the layer below. In some layered systems inner layers
are hidden from all except the adjacent outer layer, except for certain functions carefully
selected for export. Thus in these systems the components implement a virtual machine
at some layer in the hierarchy. (In other layered systems the layers may be only partially
opaque.) The connectors are defined by the protocols that determine how the layers will
interact. Topological constraints include limiting interactions to adjacent layers. Figure 3
illustrates this style.

The most widely known examples of this kind of architectural style are layered com-
munication protocols [31]. In this application area each layer provides a substrate for
communication at some level of abstraction. Lower levels define lower levels of interac-
tion, the lowest typically being defined by hardware connections. Other application areas
for this style include database systems and operating systems [32, 9, 33].

Layered systems have several desirable properties. First, they support design based on
increasing levels of abstraction. This allows implementors to partition a complex problem
into a sequence of incremental steps. Second, they support enhancement. Like pipelines,
because each layer interacts with at most the layers below and above, changes to the function
of one layer affect at most two other layers. Third, they support reuse. Like abstract data
types, different implementations of the same layer can be used interchangeably, provided
they support the same interfaces to their adjacent layers. This leads to the possibility of
defining standard layer interfaces to which different implementors can build. (A good
example is the OSI ISO model and some of the X Window System protocols.)

But layered systems also have disadvantages. Not all systems are easily structured
in a layered fashion. (We will see an example of this later in the case studies.) And
even if a system can logically be structured as layers, considerations of performance
may require closer coupling between logically high-level functions and their lower-level
implementations. Additionally, it can be quite difficult to find the right levels of abstraction.

Usually
procedure calls

Composites of Users
various elements

Figure 3: Layered Systems

This is particularly true for standardized layered models. One notes that the communications
community has had some difficulty mapping existing protocols into the ISO framework:
many of those protocols bridge several layers.

3.5. Repositories

In a repository style there are two quite distinct kinds of components: a central data
structure represents the current state, and a collection of independent components operate
on the central data store. Interactions between the repository and its external components
can vary significantly between systems.

The choice of control discipline leads to major subcategories. If the types of transactions
in an input stream of transactions trigger selection of processes to execute, the repository
can be a traditional database. If the current state of the central data structure is the main
trigger of selecting processes to execute, the repository can be a blackboard.

Figure 4 illustrates a simple view of a blackboard architecture. (We will examine more
detailed models in the case studies.) The blackboard model is usually presented with three
major parts:

The knowledge sources: separate, independent parcels of application-dependent knowl-
edge. Interaction among knowledge sources takes place solely through the black-
board.

10

Direct access Computation

Memory

Figure 4: The Blackboard

The blackboard data structure: problem-solving state data, organized into an application-
dependent hierarchy. Knowledge sources make changes to the blackboard that lead
incrementally to a solution to the problem.

Control: driven entirely by state of blackboard. Knowledge sources respond opportunis-
tically when changes in the blackboard make them applicable.

In the diagram there is no explicit representation of the control component. Invocation
of a knowledge source is triggered by the state of the blackboard. The actual locus of
control, and hence its implementation, can be in the knowledge sources, the blackboard, a
separate module, or some combination of these.

Blackboard systems have traditionally been used for applications requiring complex
interpretations of signal processing, such as speech and pattern recognition. Several of
these are surveyed by Nii [34], They have also appeared in other kinds of systems that
involve shared access to data with loosely coupled agents [35].

There are, of course, many other examples of repository systems. Batch-sequential
systems with global databases are a special case. Programming environments are often or-
ganized as a collection of tools together with a shared repository of programs and program
fragments [36]. Even applications that have been traditionally viewed as pipeline archi-
tectures, may be more accurately interpreted as repository systems. For example, as we
will see later, while a compiler architecture has traditionally been presented as a pipeline,
the "phases" of most modern compilers operate on a base of shared information (symbol
tables, abstract syntax tree, etc.).

11

Memo

Computation
state machine

Data access
Fetch/store

Figure 5: Interpreter

3.6. Table Driven Interpreters

In an interpreter organization a virtual machine is produced in software. An interpreter
includes the pseudo-program being interpreted and the interpretation engine itself. The
pseudo-program includes the program itself and the interpreter's analog of its execution
state (activation record). The interpretation engine includes both the definition of the
interpreter and the current state of its execution. Thus an interpreter generally has four
components: an interpretation engine to do the work, a memory that contains the pseudo-
code to be interpreted, a representation of the control state of the interpretation engine, and
a representation of the current state of the program being simulated. (See Figure 5.)

Interpreters are commonly used to build virtual machines that close the gap between
the computing engine expected by the semantics of the program and the computing engine
available in hardware. We occasionally speak of a programming language as providing,
say, a "virtual Pascal machine."

We will return to interpreters in more detail in the case studies.

3.7. Other Familiar Architectures

There are numerous other architectural styles and patterns. Some are widespread and others
are specific to particular domains. While a complete treatment of these is beyond the scope
of this paper, we briefly note a few of the important categories.

12

• Distributed processes: Distributed systems have developed a number of common
organizations for multi-process systems [37]. Some can be characterized primarily
by their topological features, such as ring and star organizations. Others are bet-
ter characterized in terms of the kinds of inter-process protocols that are used for
communication (e.g., heartbeat algorithms).

One common form of distributed system architecture is a "client-server" organiza-
tion [38]. In these systems a server represents a process that provides services to other
processes (the clients). Usually the server does not know in advance the identities
or number of clients that will access it at run time. On the other hand, clients know
the identity of a server (or can find it out through some other server) and access it by
remote procedure call.

• Main program/subroutine organizations: The primary organization of many sys-
tems mirrors the programming language in which the system is written. For languages
without support for modularization this often results in a system organized around a
main program and a set of subroutines. The main program acts as the driver for the
subroutines, typically providing a control loop for sequencing through the subroutines
in some order.

• Domain-specific software architectures: Recently there has been considerable in-
terest in developing "reference" architectures for specific domains [39]. These archi-
tectures provide an organizational structure tailored to a family of applications, such
as avionics, command and control, or vehicle management systems. By specializing
the architecture to the domain, it is possible to increase the descriptive power of
structures. Indeed, in many cases the architecture is sufficiently constrained that an
executable system can be generated automatically or semi-automatically from the
architectural description itself.

• State transition systems: A common organization for many reactive systems is the
state transition system [40]. These systems are defined in terms a set of states and a
set of named transitions that move a system from one state to another.

• Process control systems: Systems intended to provide dynamic control of a physical
environment are often organized as process control systems [41]. These systems are
roughly characterized as a feedback loop in which inputs from sensors are used by
the process control system to determine a set of outputs that will produce a new state
of the environment.

3.8. Heterogeneous Architectures

Thus far we have been speaking primarily of "pure" architectural styles. While it is
important to understand the individual nature of each of these styles, most systems typically
involve some combination of several styles.

13

There are different ways in which architectural styles can be combined. One way is
through hierarchy. A component of a system organized in one architectural style may
have an internal structure that is developed a completely different style. For example, in a
Unix pipeline the individual components may be represented internally using virtually any
style—including, of course, another pipe and filter system.

What is perhaps more surprising is that connectors, too, can often be hierarchically
decomposed. For example, a pipe connector may be implemented internally as a FIFO
queue accessed by insert and remove operations.

A second way for styles to be combined is to permit a single component to use a mixture
of architectural connectors. For example, a component might access a repository through
part of its interface, but interact through pipes with other components in a system, and
accept control information through another part of its interface. (In fact, Unix pipe and
filter systems do this, the file system playing the role of the repository and initialization
switches playing the role of control.)

Another example is an "active database". This is a repository which activates external
components through implicit invocation. In this organization external components register
interest in portions of the database. The database automatically invokes the appropriate
tools based on this association.

A third way for styles to be combined is to completely elaborate one level of architectural
description in a completely different architectural style. We will see examples of this in the
case studies.

4. Case Studies

We now present six examples to illustrate how architectural principles can be used to
increase our understanding of software systems. The first example shows how different
architectural solutions to the same problem provide different benefits. The second case study
summarizes experience in developing a a domain-specific architectural style for a family of
industrial products. The third case study examines the familiar compiler architecture in a
fresh light. The remaining three case studies present examples of the use of heterogeneous
architectures.

4.1. Case Study 1: Key Word in Context

In his paper of 1972, Parnas proposed the following problem [42]:

The KWIC [Key Word in Context] index system accepts an ordered set of
lines, each line is an ordered set of words, and each word is an ordered set of
characters. Any line may be "circularly shifted" by repeatedly removing the
first word and appending it at the end of the line. The KWIC index system
outputs a listing of all circular shifts of all lines in alphabetical order.

14

Parnas used the problem to contrast different criteria for decomposing a system into
modules. He describes two solutions, one based on functional decomposition with shared
access to data representations, and a second based on a decomposition that hides design
decisions. Since its introduction, the problem has become well-known and is widely used as
a teaching device in software engineering. Garlan, Kaiser, and Notkin also use the problem
to illustrate modularization schemes based on implicit invocation [7].

While KWIC can be implemented as a relatively small system it is not simply of
pedagogical interest. Practical instances of it are widely used by computer scientists. For
example, the "permuted" [sic] index for the Unix Man pages is essentially such a system.

From the point of view of software architecture, the problem derives its appeal from
the fact that it can be used to illustrate the effect of changes on software design. Parnas
shows that different problem decompositions vary greatly in their ability to withstand design
changes. Among the changes he considers are:

• Changes in processing algorithm: For example, line shifting can be performed on
each line as it is read from the input device, on all the lines after they are read, or on
demand when the alphabetization requires a new set of shifted lines.

• Changes in data representation: For example, lines can be stored in various ways..
Similarly, circular shifts can be stored explicitly or implicitly (as pairs of index and
offset).

Garlan, Kaiser, and Notkin, extend Parnas' analysis by considering:

• Enhancement to system function: For example, modify the system so that shifted
lines to eliminate circular shifts that start with certain noise words (such as "a", "an",
"and", etc.). Change the system to be interactive, and allow the user to delete lines
from the original (or, alternatively, from circularly shifted) lists.

• Performance: Both space and time.

• Reuse: To what extent can the components serve as reusable entities.

We now outline four architectural designs for the KWIC system. All four are grounded
in published solutions (including implementations). The first two are those considered in
Parnas' original article. The third solution is based on the use of an implicit invocation
style and represents a variant on the solution examined by Garlan, Kaiser, and Notkin. The
fourth is a pipeline solution inspired by the Unix index utility.

After presenting each solution and briefly summarizing its strengths and weakness, we
contrast the different architectural decompositions in a table organized along the five design
dimensions itemized above.

Solution 1: Main Program/Subroutine with Shared Data

The first solution decomposes the problem according to the four basic functions performed:
input, shift, alphabetize, and output. These computational components are coordinated as

Direct Memory Access
Subprogram Call

System I/O

Master Control

Input

7r\
Circular Shift Alphabetizer Output

Characters Index Alphabetized
Index

Input
Medium

Output
Medium

Figure 6: KWIC - Shared Data Solution

subroutines by a main program that sequences through them in turn. Data is communicated
between the components through shared storage ("core storage"). Communication between
the computational components and the shared data is an unconstrained read-write protocol.
This is made possible by the fact that the coordinating program guarantees sequential access
to the data. (See Figure 6.)

Using this solution data can be represented efficiently, since computations can share the
same storage. The solution also has a certain intuitive appeal, since distinct computational
aspects are isolated in different modules.

However, as Parnas argues, it has a number of serious drawbacks in terms of its ability
to handle changes. In particular, a change in data storage format will affect almost all of
the modules. Similarly changes in the overall processing algorithm and enhancements to
system function are not easily accomodated. Finally, this decomposition is not particularly
supportive of reuse.

Solution 2: Abstract Data Types

The second solution decomposes the system into a similar set of five modules. However, in
this case data is no longer directly shared by the computational components. Instead, each
module provides an interface that permits other components to access data only by invoking
procedures in that interface. (See Figure 7, which illustrates how each of the components
now has a set of procedures that determine the form of access by other components in the
system.)

16

Subprogram Call
System I/O

Input
Medium

Figure 7: KWIC - Abstract Data Type Solution

This solution provides the same logical decomposition into processing modules as the
first. However, it has a number of advantages over the first solution when design changes
are considered. In particular, both algorithms and data representations can be changed in
individual modules without affecting others. Moreover, reuse is better supported than in
the first solution because modules make fewer assumptions about the others with which
they interact.

On the other hand, as discussed by Garlan, Kaiser, and Notkin, the solution is not
particularly well-suited to enhancements. The main problem is that to add new functions to
the system, the implementor must either modify the existing modules - compromising their
simplicity and integrity - or add new modules that lead to performance penalties. (See [7]
for a detailed discussion.)

Solution 3: Implicit Invocation

The third solution uses a form of component integration based on shared data similar to the
first solution. However, there are two important differences. First, the interface to the data
is more abstract. Rather than exposing the storage formats to the computing modules, data
is accessed abstractly (for example, as a list or a set). Second, computations are invoked
implicitly as data is modified. Thus interaction is based on an active data model. For
example, the act of adding a new line to the line storage causes an event to be sent to the
shift module. This allows it to produce circular shifts (in a separate abstract shared data

17

-} Implicit Invocation
► Subprogram Call
- System I/O

Master Control

Input Circular
Shift

Input
Medium

Alphabetizer

Lines

Output

Lines Z]
Output
Medium

Figure 8: KWIC - Implicit Invocation Solution

store). This in turn causes the alphabetizer to be implicitly invoked so that it can alphabetize
the lines.

This solution easily supports functional enhancements to the system: additional modules
can be attached to the system by registering them to be invoked on data-changing events.
Because data is accessed abstractly, it also insulates computations from changes in data
representation. Reuse is also supported, since the implicitly invoked modules only rely on
the existence of certain externally triggered events.

However, the solution suffers from the fact that it can be difficult to control the order of
processing of the implicitly invoked modules. Further, because invocations are data driven,
the most natural implementations of this kind of decomposition tend to use more space than
the previously considered decompositions.

Solution 4: Pipes and Filters

The fourth solution uses a pipeline solution. In this case there are four filters: input, shift,
alphabetize, and output. Each filter processes the data and sends it to the next filter. Control
is distributed: each filter can run whenever it has data on which to compute. Data sharing
between filters is strictly limited to that transmitted on pipes. (See Figure 9.)

This solution has several nice properties. First, it maintains the intuitive flow of
processing. Second, it supports reuse, since each filter can function in isolation (provided
upstream filters produce data in the form it expects). New functions are easily added to

18

Input
Medium Input Circular

Shift

Pipe
System I/O

Alphabetizer -> Output Output
Medium

Figure 9: KWIC - Pipe and Filter Solution

the system by inserting filters at the appropriate point in the processing sequence. Third, it
supports ease of modification, since filters are logically independent of other filters.

On the other hand it has a number of drawbacks. First, it is virtually impossible to
modify the design to support an interactive system. For example, in order to delete a
line, there would have to be some persistent shared storage, violating a basic tenet of this
approach. Second, the solution is inefficient in terms of its use of space, since each filter
must copy all of the data to its output ports.

Comparisons

The solutions can be compared by tabulating their ability to address the design consider-
ations itemized earlier. A detailed comparison would have to involve consideration of a
number of factors concerning the intended use of the system: for example, is it batch or
interactive, update-intensive or query-intensive, etc.

Figure 10 provides an approximation to such an analysis, based on the discussion of
architectural styles introduced earlier. As Parnas pointed out, the shared data solution
is particularly weak in its support for changes in the overall processing algorithm, data
representations, and reuse. On the other hand it can achieve relatively good performance,
by virtue of direct sharing of data. Further, it is relatively easy to add a new processing
component (also accessing the shared data). The abstract data type solution allows changes
to data representation and supports reuse', without necessarily compromising performance.
However, the interactions between components in that solution are wired into the modules
themselves, so changing the overall processing algorithm or adding new functions may
involve a large number of changes to the existing system.

The implicit invocation solution is particularly good for adding new functionality.
However, it suffers from some of the problems of the shared data approach: poor support
for change in data representation and reuse. Moreover, it may introduce extra execution
overhead. The pipe and filter solution allows new filters to be placed in the stream of text
processing. Therefore it supports changes in processing algorithm, changes in function,
and reuse. On the other hand, decisions about data representation will be wired into the
assumptions about the kind of data that is transmitted along the pipes. Further, depending on

19

Shared
Data

Abstract
Data Type

Implicit
Invocation

Pipe&
Filter

Change in Algorithm - - + +
Change in Data Rep - + - -
Change in Function + - + +

Performance + + - -
Reuse - + - +

Figure 10: KWIC - Comparison of Solutions

the exchange format, there may be additional overhead involved in parsing and unparsing
the data onto pipes.

4.2. Case Study 2: Instmmentation Software

Our second case study describes the industrial development of a software architecture at
Tektronix, Inc. This work was carried out as a collaborative effort between several Tektronix
product divisions and the Computer Research Laboratory over a three year period [6].

The purpose of the project was to develop a reusable system architecture for oscillo-
scopes. An oscilloscope is an instrumentation system that samples electrical signals and
displays pictures (called traces) of them on a screen. Additionally, oscilloscopes perform
measurements on the signals, and also display these on the screen. While oscilloscopes
were once simple analogue devices involving little software, modern oscilloscopes rely
primarily on digital technology and have quite complex software. It is not uncommon for
a modern oscilloscope to perform dozens of measurements, supply megabytes of internal
storage, interface to a network of workstations and other instruments, and provide sophisti-
cated user interface including a touch panel screen with menus, built-in help facilities, and
color displays.

Like many companies that have had to rely increasingly on software to support their
products, Tektronix was faced with number of problems. First, there was little reuse across
different oscilloscope products. Instead, different oscilloscopes were built by different
product divisions, each with their own development conventions, software organization,
programming language, and development tools. Moreover, even within a single product
division, each new oscilloscope typically required a redesign from scratch to accommodate
changes in hardware capability and new requirements on the user interface. This problem
was compounded by the fact that both hardware and interface requirements were changing
increasingly rapidly. Furthermore, there was a perceived need to address "specialized
markets". To do this it would have to be possible to tailor a general-purpose instrument, to
a specific set of uses.

Second, there were increasing performance problems because the software was not
rapidly configurable within the instrument. This problem arises because an oscilloscope can

20

oscilloscope
object

waveform

max-min wvfm x-y wvfm accumulate wvfm

Figure 11: Oscilloscopes - An Object-oriented Model

be configured in many different modes, depending on the user's task. In old oscilloscopes
reconfiguration was handled simply by loading different software to handle the new mode.
But as the total size of software was increasing, this was leading to delays between a user's
request for a new mode and a reconfigured instrument.

The goal of the project was to develop an architectural framework for oscilloscopes
that would address these problems. The result of that work was a domain-specific software
architecture that formed the basis of the next generation of Tektronix oscilloscopes. Since
then the framework has been extended and adapted to accommodate a broader class of
system, while at the same time being better adapted to the specific needs of instrumentation
software.

In the remainder of this section, we outline the stages in this architectural development.

An object-oriented model

The first attempt at developing a reusable architecture focused on producing an object-
oriented model of the software domain. This led to a clarification of the data types used in
oscilloscopes: waveforms, signals, measurements, trigger modes, etc. (See Figure 11.)

While this was a useful exercise, tf fell far short of producing the hoped-for results.
Although many types of data were identified, there was no overall model that explained
how the types fit together. This led to confusion about the partitioning of functionality.
For example, should measurements be associated with the types of data being measured, or
represented externally? Which objects should the user interface talk to?

A layered model

The second phase attempted to correct these problems by providing a layered model of
an oscilloscope. (See Figure 11.) In this model the core layer represented the signal
manipulation functions that filter signals as they enter the oscilloscope. These functions
are typically implemented in hardware. The next layer represented waveform acquisition.
Within this layer signals are digitized and stored internally for later processing. The third

21

Figure 12: Oscilloscopes - A Layered Model

layer consisted of waveform manipulation, including measurement, waveform addition,
Fourier transformation, etc. The fourth layer consisted of display functions. This layer was
responsible for mapping digitized waveforms and measurements to visual representations.
The outermost layer was the user interface. This layer was responsible for interacting with
the user and for deciding which data should be shown on the screen. (See Figure 12.)

This layered model was intuitively appealing since it partitioned the functions of an
oscilloscope into well-defined groupings. Unfortunately it was the wrong model for the
application domain. The main problem was that the boundaries of abstraction enforced
by the layers conflicted with the needs for interaction between the various functions. For
example, the model suggests that all user interactions with an oscilloscope should be in
terms of the visual representations. But in practice real oscilloscope users need to directly
affect the functions in all layers, such as setting attenuation in the signal manipulation layer,
choosing acquisition mode and parameters in the acquisition layer, or creating derived
waveforms in the waveform manipulation layer.

A Pipe and Filter Model

The third attempt yielded a model in which oscilloscope functions were viewed as incremen-
tal transformers of data. Signal transformers serve to condition external signals. Acquisition
transformers derive digitized waveforms from these signals. Display transformers convert
these waveforms into visual data. (See Figure 13.)

This architectural model was a significant improvement over the layered model in that it
did not isolate the functions in separate partitions. For example, nothing in this model would
prevent signal data directly feeding into display filters. Further, the model corresponded
well to the engineers' view of signal processing as a dataflow problem.

The main problem with the model was that it was not clear how the user should interact
with it. If the user were simply at one end of the system, then this would represent an even
worse decomposition than the layered system.

22

sfrSr'1 CouP|e

Times

Acquire To-XY
Wave orm

Trigger subsystem

■*■■ Clip
race

Measure Measurement

Figure 13: Oscilloscopes - A Pipe and Filter Model

Coupling

fäjzn Co-uP'e

Kind, Rate

i
Trans Size

Times

Acquire
Wave orm

Trigger subsystem

i i
To-XY -»■ Clip

race

Measure Measurement

Figure 14: Oscilloscopes - A Modified Pipe and Filter Model

A Modified Pipe and Filter Model

The fourth solution accounted for user inputs by associating with each filter a control inter-
face that allows an external entity to set parameters of operation for the filter. For example,
the acquisition filter might have parameters that determine sample rate and waveform du-
ration. These inputs serve as configuration parameters for the oscilloscope. Formally, the
filters can be modelled as "higher-order" functions, for which the configuration parameters
determine what data transformation the filter will perform. (See [17] for this interpretation
of the architecture.) Figure 14 illustrates this architecture.

The introduction of a control interface solves a large part of the user interface problem.
First, it provides a collection of settings that determine what aspects of the oscilloscope can
be modified dynamically by the user. It also explains how changes to oscilloscope function
can be accomplished by incremental adjustments to the software. Second it decouples the
signal processing functions of the oscilloscope from the actual user interface: the signal
processing software makes no assumptions about how the user actually communicates
changes to its control parameters. Conversely, the actual user interface can treat the signal
processing functions solely in terms of the control parameters. This allowed the designers
to change the implementation of the signal processing software and hardware without
impacting an interface, provided the control interface remained unchanged.

23

Further Specialization

The adapted pipe and filter model was a great improvement. But it, too, had some problems.
The most significant problem was that the pipe and filter computational model led to poor
performance. In particular, waveforms can occupy a large amount of internal storage: it
is simply not practical for each filter to copy waveforms every time they process them.
Further, different filters may run at radically different speeds: it is unacceptable to slow one
filter down because another filter is still processing its data.

To handle these problems the model was further specialized. Instead of having a single
kind of pipe, several "colors" of pipes were introduced. Some of these allowed data to
be processed without copying. Others permitted data to be ignored by slow filters if they
were in the middle of processing other data. These additional pipes increased the stylistic
vocabulary and allowed the pipe/filter computations to be tailored more directly to the
performance needs of the product.

Summary

This case study illustrates the issues involved in developing an architectural style for a real
application domain. It underscores the fact that different architectural styles have different
effects on the ability to solve a set of problems. Moreover, it illustrates that architectural
designs for industrial software must typically be adapted from pure forms to specialized
styles that meet the needs of the specific domain. In this case, the final result depended
greatly on the properties of pipe and filter architectures, but found ways to adapt that generic
style so that it could also satisfy the performance needs of the product family.

4-3. Case 3: A Fresh View of Compilers

The architecture of a system can change in response to improvements in technology. This
can be seen in the way we think about compilers.

In the 1970's, compilation was regarded as a sequential process, and the organization
of a compiler was typically drawn as in Figure 15. Text enters at the left end and is
transformed in a variety of ways - to lexical token stream, parse tree, intermediate code -
before emerging as machine code on the right. We often refer to this compilation model as
a pipeline, even though it was (at least originally) closer to a batch sequential architecture
in which each transformation ("pass") was completed before the next one started.

In fact, even the batch sequential version of this model was not completely accurate.
Most compilers created a separate symbol table during lexical analysis and used or updated
it during subsequent passes. It was not part of the data that flowed from one pass to another
but rather existed outside all the passes. So the system structure was more properly drawn
as in Figure 16.

As time passed, compiler technology grew more sophisticated. The algorithms and
representations of compilation grew more complex, and increasing attention turned to
the intermediate representation of the program during compilation. Improved theoretical

24

Text Code
Lex Syn Sem Opt Code

Figure 15: Traditional Compiler Model.

Data fetch/store

Figure 16: Traditional Compiler Model with Shared Symbol Table.

understanding, such as attribute grammers, accelerated this trend. The consequence was
that by the mid-1980's the intermediate representation (for example, an attributed parse
tree), was the center of attention. It was created early during compilation and manipulated
during the remainder; the data structure might change in detail, but it remained substantially
one growing structure throughout. However, we continued (sometimes to the present) to
model the compiler with sequential data flow as in Figure 17.

In fact, a more appropriate view of this structure would re-direct attention from the
sequence of passes to the central shared representation. When you declare that the tree is
the locus of compilation information and the passes define operations on the tree, it becomes
natural to re-draw the architecture as in Figure 18. Now the connections between passes
denote control flow, which is a more accurate depiction; the rather stronger connections
between the passes and the tree/symbol table structure denote data access and manipula-
tion. In this fashion, the architecture has become a repository, and that is indeed a more
appropriate way to think about a compiler of this class.

Happily, this new view also accommodates various tools that operate on the internal
representation rather than the textual form of a program; these include syntax-directed
editors and various analysis tools.

Note that this repository resembles a blackboard in some respects and differs in others.
Like a blackboard, the information of the computation is located centrally and operated
on by independent computations which interact only through the shared data. However,
whereas the execution order of the operations in a blackboard is determined by the types of
the incoming database modifications, the execution order of the compiler is predetermined.

25

Vestigal data flow
SymTab

•Memory

Code

Computations
(transducers and

transforms)
ch/store

Figure 17: Modern Canonical Compiler

Might be
rule-based

Figure 18: Canonical Compiler, Revisited

26

4'4- Case 4: A. Layered Design with Different Styles for the Layers

The PRO VOX system by Fisher Controls offers distributed process control for chemical
production processes [43]. Process control capabilities range from simple control loops that
control pressure, flow, or levels to complex strategies involving interrelated control loops.
Provisions are made for integration with plant management and information systems in
support of computer integrated manufacturing. The system architecture integrates process
control with plant management and information systems in a 5-level layered hierarchy.
Figure 19 shows this hierarchy: the right side is the software view, and the left side is the
hardware view. Each level corresponds to a different process management function with
its own decision-support requirements.

• Level 1: Process measurement and control: direct adjustment of final control ele-
ments.

• Level 2: Process supervision: operations console for monitoring and controlling
Level 1.

• Level 3: Process management: computer-based plant automation, including man-
agement reports, optimization strategies, and guidance to operations console.

• Levels 4 and 5: Plant and corporate management: higher-level functions such as cost
accounting, inventory control, and order processing/scheduling.

Different kinds of computation and response times are required at different levels of
this hierarchy. Accordingly, different computational models are used. Levels 1 to 3 are
object-oriented; Levels 4 and 5 are largely based on conventional data-processing repository
models. For present purposes it suffices to examine the object-oriented model of Level 2
and the repositories of Levels 4 and 5.

For the control and monitoring functions of Level 2, PROVOX uses a set of points,
or loci of process control. Figure 20 shows the canonical form of a point definition;
seven specialized forms support the most common kinds of control.. Points are, in essence,
object-oriented design elements that encapsulate information about control points of the
process. The points are individually configured to achieve the desired contrötstrategy. Data
associated with a point includes: Operating parameters, including current process value,
setpoint (target value), valve output, and mode (automatic or manual). Tuning parameters,
such as gain, reset, derivative, and alarm trip-points. Configuration parameters, including
tag (name) and I/O channels.

In addition, the point's data can include a template for a control strategy. Like any good
object, a point also includes procedural definitions such as control algorithms, communica-
tion connections, reporting services, and trace facilities. A collection of points implements
the desired process control strategy through the communication services and through the
actual dynamics of the process (e.g., if one point increases flow into a tank, the current
value of a point that senses tank level will reflect this change). Although the communica-
tion through process state deviates from the usual procedural or message-based control of

27

Lev»! 5

LeveU

Level 3

Lev* 2

Level 1

Figure 19: PRO VOX - Hierarchical Top Level

TAG

TAG
TAG

TAG

DATA

OPERATING
TUNING
CONFIGUR-

ATION

ACTION

ALGORITHM
NAME(S)

TEMPLATE

SERVICES

COMMUNI-
CATION

TRACE
ALARMS
ETC

Figure 20: PRO VOX - Object-Oriented Elaboration

28

objects, points are conceptually very like objects in their encapsulation of essential state
and action information.

Reports from points appear as input transactions to data collection and analysis processes
at higher design levels. The organization of the points into control processes can be defined
by the designer to match the process control strategy. These can be further aggregated
into Plant Process Areas (points related to a set of equipment such as a cooling tower)
and thence into Plant Management Areas (segments of a plant that would be controlled by
single operators).

PROVOX makes provisions for integration with plant management and business sys-
tems at Levels 4 and 5. Selection of those systems is often independent of process control
design; PROVOX does not itself provide MIS systems directly but does provide for inte-
grating a conventional host computer with conventional database management. The data
collection facilities of Level 3, the reporting facilities of Level 2, and the network that
supports distributed implementation suffice to provide process information as transactions
to these databases. Such databases are commonly designed as repositories, with transac-
tion processing functions supporting a central data store—quite a different style from the
object-oriented design of Level 2.

The use of hierarchical layers at the top level of a system is fairly common. This permits
strong separation of different classes of function and clean interfaces between the layers.
However, within each layer the interactions among components are often too intricate to
permit strict layering.

4.5. Case 5: An Interpreter Using Different Idioms for the Compo-
nents

Rule-based systems provide a means of codifying the problem-solving know-how of human
experts. These experts tend to capture problem-solving techniques as sets of situation-
action rules whose execution or activation is sequenced in response to the conditions of
the computation rather than by a predetermined scheme. Since these rules are not directly
executable by available computers, systems for interpreting such rules must be provided.
Hayes-Roth surveyed the architecture and operation of rule-based systems [44].

The basic features of a rule-based system, shown in Hayes-Roth's rendering as Figure 21,
are essentially the features of a table-driven interpreter, as outlined earlier.

• The pseudo-code to be executed, in this case the knowledge base

• The interpretation engine, in this case the rule interpreter, the heart of the inference
engine

• The control state of the interpretation engine, in this case the rule and data element
selector

• The current state of the program running on the virtual machine, in this case the
working memory.

29

Knowledge Base

Figure 21: Basic Rule-Based System

Rule-based systems make heavy use of pattern matching and context (currently relevant
rules). Adding special mechanisms for these facilities to the design leads to the more
complicated view shown in Figure 22. In adding this complexity, the original simple
interpreter vanishes in a sea of new interactions and data flows. Although the interfaces
among the original modules remain, they are not distinguished from the newly-added
interfaces.

However, the interpreter model can be rediscovered by identifying the components of
Figure 22 with their design antecedents in Figure 21. This is done in Figure 23. Viewed
in this way, the elaboration of the design becomes much easier to explain and understand.
For example, we see that:

• The knowledge base remains a relatively simple memory structure, merely gaining
substructure to distinguish active from inactive contents.

• The rule interpreter is expanded with the interpreter idiom (that is, the interpretation
engine of the rule-based system is itself implemented as a table-driven interpreter),
with control procedures playing the role of the pseudo-code to be executed and the
execution stack the role of the current program state.

• "Rule and data element selection" is implemented primarily as a pipeline that pro-
gressively transforms active rules and facts to prioritized activations; in this pipeline
the third filter ("nominators") also uses a fixed database of metarules.

• Working memory is not further elaborated.

30

Rule Memory Fact Memory

Multi-
dimensional
working
memory

Outputs*-

Data

Unfinished
^actions

Triggering Activation/
data deacttvatton

Updates

Execution
stack Next action

Inactive
rules

Inactive
facts

Active
rule«

Active
facts

Rule
antecedent

subexpressions

Incomplete

Selected
action

Delete
completed
activations

Data-flow
network
for partially
evaluated
rule activations

Matching
«rule, data»

pair»!

Control
procedures

Scheduler

Prioritized
activations

Agenda
Candidate , Ruleand
jrule. data> (fact

activations

Preferences ''
and

prioritiei

Figure 22: Sophisticated Rule-Based System

31

Inputa-

Output**-

Working Memory

^^W- »tagerinfl Activation^ *****

Knowledge Base

deactivatioiy

Actlva

Inactive os

sN
Aetlva SJ
fac*_jS

Rule Interpreter

Rule and data
element
selection

Figure 23: Simplified Rule-Based System

32

The interfaces among the rediscovered components are unchanged from the simple
model except for the two bold lines over which the interpreter controls activations.

This example illustrates two points. First, in a sophisticated rule-based system the
elements of the simple rule-based system are elaborated in response to execution character-
istics of the particular class of languages being interpreted. If the design is presented in this
way, the original concept is retained to guide understanding and later maintenance. Second,
as the design is elaborated, different components of the simple model can be elaborated
with different idioms.

Note that the rule-based model is itself a design structure: it calls for a set of rules
whose control relations are determined during execution by the state of the computation. A
rule-based system provides a virtual machine—a rule executor—to support this model.

4.6. Case 6: A Blackboard Globally Recast as Interpreter

The blackboard model of problem solving is a highly structured special case of opportunistic
problem solving. In this model, the solution space is organized into several application-
dependent hierarchies and the domain knowledge is partitioned into independent modules
of knowledge that operate on knowledge within and between levels [34]. Figure 4 showed
the basic architecture of a blackboard system and outlined its three major parts: knowledge
sources, the blackboard data structure, and control.

The first major blackboard system was the HEARSAY-II speech recognition system.
Nii's schematic of the HEARSAY-II architecture appears as Figure 24. The blackboard
structure is a six- to eight-level hierarchy in which each level abstracts information on its
adjacent lower level and blackboard elements rep- resent hypotheses about the interpretation
of an utterance. Knowledge sources correspond to such tasks as segmenting the raw signal,
identifying phonemes, generating word candidates, hypothesizing syntactic segments, and
proposing semantic interpretations. Each knowledge source is organized as a condition part
that specifies when it is applicable and an action part that processes relevant blackboard
elements and generates new ones. The control component is realized as a blackboard
monitor and a scheduler; the scheduler monitors the blackboard and calculates priorities for
applying the knowledge sources to various elements on the blackboard.

HEARSAY-II was implemented between 1971 and 1976 on DEC PDP-10s; these ma-
chines were not directly capable of condition-triggered control, so it should not be surprising
to find that an implementation provides the mechanisms of a virtual machine that realizes
the implicit invocation semantics required by the blackboard model.

Figure 24 not only elaborates the individual components of Figure 4; it also adds com-
ponents for the previously-implicit control component. In the process, the figure becomes
rather complex. This complexity arises because it is now illustrating two concepts: the
blackboard model and realization of that model by a virtual machine. The blackboard
model can be recovered as in Figure 25 by suppressing the control mechanism and re-
grouping the conditions and actions into knowledge sources. The virtual machine can be
seen to be realized by an interpreter using the assignment of function in Figure 26. Here

33

Level n

Level 3

Level 2

Level 1

Control flow
Data flow

Us'
i
i
i
^

Condition Pah

Blackboard
Iphange

J>

Blackboarc
Monitor

Focus of
Control f~"
Database

_

-* Action
-^

Condition

?K Action
f
i
i

Condition i

i Action
i

^Stimulus
\Response Frame

Scheduling
' Queue

A
i

. Scheduler

Figure 24: Hearsay-II

34

Blackboard Knowledge Sources

■jjji sn

p Action \m: T*
1 " l '

Not relevant
to blackboard
model

I.. | Condition R%^Zp[

(Action

KS

KS

Figure 25: Blackboard View of Hearsay-II

the blackboard cleanly corresponds to the current state of the recognition task. The col-
lection of knowledge sources roughly supplies the pseudocode of the interpreter; however,
the actions also contribute to the interpretation engine. The interpretation engine includes
several components that appear explicitly in Figure 24: the blackboard monitor, the focus
of control database, and the scheduler, but also the actions of the knowledge sources. The
scheduling queue corresponds roughly to the control state. To the extent that execution
of conditions determines priorities, the conditions contribute to rule selection as well as
forming pseudocode.

Here we see a system initially designed with one model (blackboard, a special form
of repository), then realized through a different model (interpreter). The realization is not
a component-by-component expansion as in the previous two examples; the view as an
interpreter is a different aggregation of components from the view as blackboard.

35

Program State
(Working Memory)

Pseudo-Code
(Knowledge Base)

^^^^^^^i^jj^^^

Löwin

Interpretation
Engine

C
s - - >|| Action Mt*"***» :%f

Condition
X
mMWWMWIW

1 t
re
Q.

V o C (/>
re c
0) 0)
i_
re c

o
(/i c
o re
*-» 0) o i_

< Q.
0) • • 4-1

CD c
*-i
o »♦— z o

tsffijiwit&iüs^

Figure 26: Interpreter View of Hearsay-II

36

5. Past, Present, and Future

We have outlined a number of architectural styles and shown how they can be applied
and adapted to specific software systems. We hope that this has convinced the reader
that analysis and design of systems in terms of software architecture is both viable and
worth doing. Further we hope to have made it clear that an understanding of the emerging
vocabulary of architectural styles is a significant—if not necessary—intellectual tool for
the software engineer.

There is, of course, much more to software architecture than we have had space to
cover. In particular, we have said very little about existing results in the areas of analysis,
formal specification, domain-specific architectures, module interconnection languages, and
special-architecture tools.

This is not to say that more work isn't needed. Indeed, we can expect to see significant
advances in a number of areas including:

• Better taxonomies of architectures and architectural styles.

• Formal models for characterizing and analyzing architectures.

• Better understanding of the primitive semantic entities from which these styles are
composed.

• Notations for describing architectural designs.

• Tools and environments for developing architectural designs.

• Techniques for extracting architectural information from existing code.

• Better understanding of the role of architectures in the life-cycle process.

These are all areas of active research both in industry and academia. Given the increasing
interest in this emerging field, we can expect that our understanding of the principles and
practice of software architecture will improve considerably over time. However, as we have
illustrated, even with the basic concepts that we now have in hand, design at the level of
software architecture can provide direct and substantial benefit to the practice of software
engineering.

Acknowledgements

We gratefully acknowledge our many colleagues who have contributed to the ideas
presented in this paper. In particular, we would like to thank Chris Okasaki, Curtis Scott,
and Roy Swonger for their help in developing the course from which much of this material
was drawn. We thank David Notkin, Kevin Sullivan, and Gail Kaiser for their contribu-
tion towards understanding event-based systems. Rob Allen helped develop a rigorous
understanding of the pipe and filter style. We would like to acknowledge the oscilloscope

37

development team at Tektronix, and especially Norm Delisle, for their part in demonstrating
the value of domain-specific architectural styles in an industrial context. Finally, we would
like to thank Barry Boehm, Larry Druffel, and Dilip Soni for their constructive comments
on early drafts of the paper.

38

Bibliography

[1] D. Garlan, M. Shaw, C. Okasaki, C. Scott, and R. Swonger, "Experience with a course
on architectures for software systems," in Proceedings of the Sixth SEI Conference on
Software Engineering Education, Springer Verlag, LNCS 376, October 1992.

[2] M. Shaw, 'Toward higher-level abstractions for software systems," in Data & Knowl-
edge Engineering, vol. 5, pp. 119-128, North Holland: Elsevier Science Publishers
B.V., 1990.

[3] M. Shaw, "Heterogeneous design idioms for software architecture," in Proceedings
of the Sixth International Workshop on Software Specification and Design, IEEE
Computer Society, Software Engineering Notes, (Como, Italy), pp. 158-165, October
25-26 1991.

[4] M. Shaw, "Software architectures for shared information systems," in Mind Matters:
Contributions to Cognitive and Computer Science in Honor of Allen Newell, Erlbaum,
1993.

[5] R. Allen and D. Garlan, "A formal approach to software architectures," in Proceedings
ofIFIP'92 (J. van Leeuwen, ed.), Elsevier Science Publishers B.V., September 1992.

[6] D. Garlan and D. Notkin, "Formalizing design spaces: Implicit invocation mecha-
nisms," in VDM'9I: Formal Software Development Methods, (Noordwijkerhout, The
Netherlands), pp. 31^4, Springer-Verlag, LNCS 551, October 1991.

[7] D. Garlan, G. E. Kaiser, and D. Notkin, "Using tool abstraction to compose systems,"
IEEE Computer, vol. 25, June 1992.

[8] A. Z. Spector et al, "Camelot: A distributed transaction facility for Mach and the In-
ternet - an interim report," Tech. Rep. CMU-CS-87-129, Carnegie Mellon University,
June 1987.

[9] M. Fridrich and W. Older, "Helix: The architecture of the XMS distributed file
system," IEEE Software, vol. 2, pp. 21-29, May 1985.

[10] M. A. Linton, "Distributed management of a software database," IEEE Software,
vol. 4, pp. 70-76, November 1987.

39

[11] V. Seshadri et ai, "Semantic analysis in a.concurrent compiler," in Proceedings of
ACM SIGPLAN '88 Conference on Programming Language Design and Implementa-

tion, ACM SIGPLAN Notices, 1988.

[12] M. C. Paulk, "The ARC Network: A case study," IEEE Software, vol. 2, pp. 61-69,

May 1985.

[13] M. Chen and R. J. Norman, "A framework for integrated case," IEEE Software, vol. 9,
pp. 18-22, March 1992.

[14] "NIST/ECMA reference model for frameworks of software engineering environ-
ments." NIST Special Publication 500-201, December 1991.

[15] R. W. Scheifler and J. Gettys, "The X window system," ACM Transactions on Graph-
ics, vol. 5, pp. 79-109, Apr. 1986.

[16] M. J. Bach, The Design of the UNIX Operating System, ch. 5.12, pp. 111-119. Software
Series, Prentice-Hall, 1986.

[17] N. Delisle and D. Garlan, "Applying formal specification to industrial problems: A
specification of an oscilloscope.," IEEE Software, September 1990.

[18] G. Kahn, "The semantics of a simple language for parallel programming," Information

Processing, 1974.

[19] M. R. Barbacci, C. B. Weinstock, and J. M. Wing, "Programming at the processor-
memory-switch level," in Proceedings of the 10th International Conference on Soft-
ware Engineering, (Singapore), pp. 19-28, IEEE Computer Society Press, April 1988.

[20] G. E. Kaiser and D. Garlan, "Synthesizing programming environments from reusable
features," in Software Reusability (T J. Biggerstaff and A. J. Perlis, eds.), vol. 2, ACM

Press, 1989.

[21] W. Harrison, "RPDE3: A framework for integrating tool fragments," IEEE Software,
vol. 4, Nov. 1987.

[22] C. Hewitt, "Planner: A language for proving theorems in robots," in Proceedings of
the First International Joint Conference in Artificial Intelligence, 1969.

[23] S. P. Reiss, "Connecting tools using message passing in the field program development
environment," IEEE Software, July 1990.

[24] C. Gerety, "HP Softbench: A new generation of software development tools," Tech.
Rep. SESD-89-25, Hewlett-Packard Software Engineering Systems Division, Fort
Collins, Colorado, November 1989.

40

[25] R. M. Balzer, "Living with the next generation operating system," in Proceedings of
the 4th World Computer Conference, Sept. 1986.

[26] G. Krasner and S. Pope, "A cookbook for using the model-view-controller user
interface paradigm in Smalltalk-80," Journal of Object Oriented Programming, vol. 1,
pp. 26-49, August/September 1988.

[27] M. Shaw, E. Borison, M. Horowitz, T. Lane, D. Nichols, and R. Pausch, "Descartes:
A programming-language approach to interactive display interfaces," Proceedings of
SIGPLAN '83: Symposium on Programming Language Issues in Software Systems,
ACM SIGPLAN Notices, vol. 18, pp. 100-111, June 1983.

[28] A. N. Habermann and D. S. Notkin, "Gandalf: Software development environments,"
IEEE Transactions on Software Engineering, vol. SE-12, pp. 1117-1127, Dec. 1986.

[29] A. N. Habermann, D. Garlan, and D. Notkin, "Generation of integrated task-specific
software environments," in CMU Computer Science: A 25th Commemorative (R. F.
Rashid, ed.), Anthology Series, pp. 69-98, ACM Press, 1991.

[30] K. Sullivan and D. Notkin, "Reconciling environment integration and component
independence," in Proceedings of ACM SIGSOFT90: Fourth Symposium on Software
Development Environments, pp. 22-33, December 1990.

[31] G. R. McClain, ed., Open Systems Interconnection Handbook. New York, NY: Inter-
text Publications McGraw-Hill Book Company, 1991.

[32] D. Batory and S. O'Malley, "The design and implementation of hierarchical software
systems using reusable components," Tech. Rep. TR-91-22, Department of Computer
Science, University of Texas, Austin, June 1991.

[33] H. C. Lauer and E. H. Satterthwaite, "Impact of MESA on system design," in Pro-
ceedings of the Third International Conference on Software Engineering, (Atlanta,
GA), pp. 174-175, IEEE Computer Society Press, May 1979.

[34] H. P. Nii, "Blackboard systems Parts 1 & 2," AI Magazine, vol. 7 nos 3 (pp. 38-53)
and 4 (pp. 62-69), 1986.

[35] V. Ambriola, P. Ciancarini, and C. Montangero, "Software process enactment in
oikos," in Proceedings of the Fourth ACM SIGSOFT Symposium on Software Devel-
opment Environments, SIGSOFT Software Engineering Notes, (Irvine, CA), pp. 183-
192, December 1990.

[36] D. R. Barstow, H. E. Shrobe, and E. Sandewall, eds., Interactive Programming Envi-
ronments. McGraw-Hill Book Co., 1984.

[37] G. R. Andrews, "Paradigms for process interaction in distributed programs," ACM
Computing Surveys, vol. 23, pp. 49-90, March 1991.

41

[38] A. Berson, Client/Server Architecture. McGraw Hill, 1992.

[39] E. Mettala and M. H. Graham, eds., The Domain-Specific Software Architecture
Program. No. CMU/SEI-92-SR-9, Carnegie Mellon Software Engineering Institute,
June 1992.

[40] D. Harel, "Statecharts: A visual formalism for complex systems," Science of Computer
Programming, vol. 8, pp. 231-274, 1987.

[41] K. J. Xstrom and B. Wittenmark, Computer-Controlled Systems Design. Prentice Hall,
second ed., 1990.

[42] D. L. Parnas, "On the criteria to be used in decomposing systems into modules,"
Communications of the ACM, vol. 15, pp. 1053-1058, December 1972.

[43] "PROVOX plus Instrumentation System: System overview," 1989.

[44] F. Hayes-Roth, "Rule-based systems," Communications of the ACM, vol. 28, pp. 921-
932, September 1985.

42

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
lb. RESTRICTIVE MARKINGS

None

2a. SECURITY CLASSIFICATION AUTHORITY
N/A

3. DISTRIBUnON/AVAILABILrrY OF REPORT

Approved for Public Release
Distribution Unlimited 2b. DECLASSIFICAnON/DOWNGRADING SCHEDULE

N/A
4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-94-TR-21

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-TR-94-21

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/ENS
5 Eglin Street
Hanscom AFB, MA 01731-2116

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/ENS

9. PROCUREMENT INSTRUMENT IDENnFICATION NUMBER

F1962890C0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.
N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

An Introduction to Software Architecture
1Z PERSONAL AUTHOR(S)
David Garlan, Mary Shaw

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

January 1994
IS. PAGE COUNT

52
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

software architecture, software design, software engineering FIELD GROUP SUB.GR.

19. ABSTRACT (continue on reverse if necessary and identify by block number)

As the size of software systems increases, the algorithms and data structures of the computation no
longer constitute the major design problems. When systems are constructed from many compo-
nents, the organization of the overall system—the software architecture—presents a new set of
design problems. This level of design has been addressed in a number of ways, including informal
diagrams and descriptive terms, module interconnection languages, templates, and frameworks for
systems that serve the needs of specific domains, and formal models of component integration
mechanisms.

(please turn over)

20. DISTRmUTION/AVAILABILrrY OF ABSTRACT

UNCLASSIFIEDAJNUMITED | SAME AS RPTTJ DTIC USERS |

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code) 2

(412)268-7631 E
2c. OFFICE SYMBOL

ESC/ENS (SEI)

DD FORM 1473,83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

